Evolutionary stability implies asymptotic stability under multiplicative weights

نویسنده

  • Ioannis Avramopoulos
چکیده

We show that evolutionarily stable states in general (nonlinear) population games (which can be viewed as continuous vector fields constrained on a polytope) are asymptotically stable under a multiplicative weights dynamic (under appropriate choices of a parameter called the learning rate or step size, which we demonstrate to be crucial to achieve convergence, as otherwise even chaotic behavior is possible to manifest). Our result implies that evolutionary theories based on multiplicative weights are compatible (in principle, more general) with those based on the notion of evolutionary stability. However, our result further establishes multiplicative weights as a nonlinear programming primitive (on par with standard nonlinear programming methods) since various nonlinear optimization problems, such as finding Nash/Wardrop equilibria in nonatomic congestion games, which are well-known to be equipped with a convex potential function, and finding strict local maxima of quadratic programming problems, are special cases of the problem of computing evolutionarily stable states in nonlinear population games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the relationship between Lp stability and internal stability of nonlinear systems

In this paper, we investigate the relationship between Lp stability and internal stability of nonlinear systems. It is shown that under certain conditions, Lp stability without finite gain implies attractivity of the equilibrium, and that local Lp stability with finite gain implies local asymptotic stability of the origin.

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Mean-square and Asymptotic Stability of Numerical Methods for Stochastic Ordinary Diierential Equations

Stability analysis of numerical methods for ordinary diierential equations is motivated by the question \for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?" We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the Theta Method. We extend some mean-squ...

متن کامل

Mean-Square and Asymptotic Stability of the Stochastic Theta Method

Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question “for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?” We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some ...

متن کامل

Permanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response

Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.07267  شماره 

صفحات  -

تاریخ انتشار 2016